
16 Ottobre 2024

Questo progetto è parte delle politiche territoriali dell’Emilia-Romagna per un’Europa più vicina ai cittadini

Assessore allo sviluppo economico del

comune di Imola

16 Ottobre 2024

Professore fellow of innovation,

SDA Bocconi school of management

Co-Founder & COO,

Humans.tech

Presidente centro di calcolo CINECA e

 Professore ordinario presso l’Università di Bologna

Professore ordinario presso il Dipartimento

di Informatica Scienza e Ingegneria -

Università di Bologna

Professore fellow of innovation,

SDA Bocconi school of management

C h e c o s ’ è l ’ I n t e l l i g e n z a A r t i f i c i a l e G e n e r a t i v a e

q u a l è i l s u o i m p a t t o n e l l e a z i e n d e e s u l l a v o r o

Presidente centro di calcolo CINECA

e Professore ordinario presso

l’Università di Bologna

S u p e r c a l c o l o e I n t e l l i g e n z a A r t i f i c i a l e :

i l r u o l o d e l t e c n o p o l o

Professore ordinario presso il

Dipartimento di Informatica Scienza

e Ingegneria - Università di Bologna

I n t e g r a r e l ' I n t e l l i g e n z a A r t i f i c i a l e v a l o r i z z a n d o

 c o m p e t e n z e l o g i c h e e p r o f e s s i o n a l i n e l l ' e r a d i g i t a l e

Credits

• This talk is mostly based on the talk “Teaching programming in the age of generative AI” given by Prof. Simone
Martini at 29th annual ACM conference on Innovation and Technology in Computer Science Education (ITiCSE)
held in Milano, July 8, 2024 and on his slides.

Programming

• Programming is the essence of computing/informatics.

• Indeed, computing is much more than programming, but programming [...] is essential to computing.

[Caspersen, Principles of Programming Education. In Computer Science Education, Bloomsbury. 2023]

• Programming was considered by many to be a uniquely intellectual activity, a black art that relied on
individual ability and idiosyncratic style. [...]

• By the early 1960s, the “problem of programming” had eclipsed all other aspects of commercial computer
development.

[Ensmenger, The Computer Boys Take Over, MIT Press, 2010, p. 29]

Programming Languages

• Programming languages are the metalanguage in which we express informatics

• Programming languages are powerful tools to organize, make coherent, and model reality

• data models; procedural, interaction, synchronization models, etc.

• Teaching programming implies teaching programming languages

• If we stop teaching programming languages, we are changing the way we understand and express our
discipline

Automatic Programming

• Automatic programming has always been a very significant research question

BUT

• Automatic programming always has been a euphemism for programming with a higher-level language than
was then available to the programmer -> Research in automatic programming is simply research in the
implementation of higher-level programming languages.

[Parnas, Sw aspects of strategic defence systems, CACM 28(12), 1985]

• Programs are not text; they are hierarchical compositions of computational structures and should be edited,
executed, and debugged in an environment that consistently acknowledges and reinforces this viewpoint.

[Teitelbaum, The Cornell Program Synthesizer. CACM. 24(9), 1981]

Generative Programming

• Generative Programming is an attempt to manufacture software components in an automated way by
developing programs that synthesize other programs.

[Cointe, Towards Generative Programming, Unconventional Programming Paradigms, 2005]

• August 2021 OpenAI Codex (originally based on GPT3)

• OpenAI Codex is a descendant of GPT-3;

• Is most capable in Python, but it is also proficient in over a dozen languages

• Trained with both natural language and billions of lines of source code from publicly available sources

The 2 big questions with generative programming

Generative AI produces reasonably good code?

 And if yes …

 Should we still teach programmming?

Finnie-Ansley et al. The Robots Are Coming: Exploring.... ACE ’22, 2022.

Student vs GPT-4
In our replication, GPT-4 would have been
one of the top students in the class.

Prather et al. The Robots Are Here: ITiCSE-WGR 2023

A change of perspective

• As the level of abstraction in computing education across educational levels steadily arose, the credo among
computing cognoscenti became that one needs to be familiar with at least one abstraction level below that at
which one is working.

[Tedre et al., Teaching Machine Learning in K–12 Classroom, IEEE Access, vol. 9, 2021]

• When you use GPT as a programmer, you can spend much less time writing code (and tests), because GPT can
do that for you. Instead, you spend your time writing prompts (aka specifications), and creating an overall
structure for the code that GPT is writing.

[Daniel Jackson, The End of Agile. on essenceofsoftware.com, 2023]

Is it really the first time?

• Translators are already extensively using computer-assisted translation

• Italo Calvino

• Will we have a machine capable of replacing the poet and the author?

• I am thinking of a writing machine that would bring to the page all those things that we are accustomed to
consider as the most jealously guarded attributes of our psychological life, of our daily experience, our
unpredictable changes of mood and inner elations, despairs and moments of illumination.

• Once we have dismantled and reassembled the process of literary composition, the decisive moment of
literary life will be that of reading.

Conclusion

• Code generator:

• deep learning based: “non-deterministic” output

• opaque for our understanding

• Automatically generated solutions may provide students with models that they can use for learning. Many
benefits arise from looking at a variety of solutions, even when the code is flawed

• More emphasis on code review, or evaluation of code

[Finnie-Ansley et al. The Robots Are Coming: Exploring.... ACE ’22, 2022.]

• Programs are meant to be read by humans and only incidentally for computers to execute.

[Abelson & Sussman, Structure and Interpretation of Computer Programs, MIT Press,
1984]

Franco Callegati

franco.callegati@unibo.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 51
	Slide 52
	Slide 53: Credits
	Slide 54: Programming
	Slide 55: Programming Languages
	Slide 56: Automatic Programming
	Slide 57: Generative Programming
	Slide 58: The 2 big questions with generative programming
	Slide 59: A change of perspective
	Slide 60: Is it really the first time?
	Slide 61: Conclusion
	Slide 62
	Slide 63

